
Learning to See Through Obstructions
Supplementary Material

Yu-Lun Liu1,4 Wei-Sheng Lai2 Ming-Hsuan Yang2,3 Yung-Yu Chuang1 Jia-Bin Huang5

1National Taiwan University 2Google 3UC Merced 4MediaTek Inc. 5Virginia Tech
https://www.cmlab.csie.ntu.edu.tw/˜yulunliu/ObstructionRemoval

1. Overview
In this supplementary material, we present additional results to complement the main manuscript. First, we describe the

detailed training steps in Section 2. Second, we show the detailed procedure for our synthetic reflection sequences generation
process in Section 4. Third, we illustrate the network architecture of the initial flow decomposition network in Section 3.
Finally, we analyze the effect of initial flow decomposition, background/reflection layer reconstruction, TV loss, and visualize
temporal consistency of our video reflection removal results in Section 5. We also provide comprehensive visual results in
our project website.

2. Training Algorithm
We describe the training steps of our two-stage training strategy and unsupervised online optimization in Algorithm 1 and

Algorithm 2. We implement our model with TensorFlow. We use the Adam optimizer to update the network parameters
and set the learning rate to 0.0001 and batch size to 2. Each training sample contains five consecutive frames. The hyper-
parameter settings are the same for both the training on synthetic data and the online optimization on real data. We provide
the detailed training algorithms and network architectures in the supplementary material.

Algorithm 1 Two-stage training strategy

Input: Quadruplets frames {Qt}
Output: Parameters of the initial flow decomposition network ΘF , the background reconstruction network ΘB , and the

reflection reconstruction network ΘR

1: while iterations iter < 400k do
2: Randomly Sample a minibatch of {B̂t} and {R̂t} from {Qt} to synthesize {It}.
3: Feed {B̂t} and {R̂t} to PWC-Net to generate ground-truth dense flow fields for background and reflection layer.
4: if iter < 200k then
5: Update ΘF with loss function Ldec in Equation 6.
6: else
7: Fix the weights of ΘF .
8: Update ΘB and ΘR from level 0 to level 4 in an end-to-end fashion with loss function L in Equation 9.

3. Network Architecture of Initial Flow Decomposition Network
The overall architecture of the initial flow decomposition network is shown in Figure 1. Our initial flow decomposition

network consists of two sub-modules: 1) a feature extractor, and 2) a layer flow estimator. Finally, we tile the global motion
vectors into two uniform flow fields V 0

B,k→j and V 0
R,k→j , for the background and reflection layers, respectively.

https://www.cmlab.csie.ntu.edu.tw/~yulunliu/ObstructionRemoval


Algorithm 2 Online optimization

Input: Parameters of the pre-trained initial �ow decomposition network� F , the background reconstruction network� B ,
and the re�ection reconstruction network� R

Output: Parameters of the online �ne-tuned background reconstruction network� B , and the re�ection reconstruction net-
work � R

1: Fix the weights of� F .
2: while iterationsiter < 1k do
3: Randomly crop the testing data to form a training minibatch.
4: Update� B and� R with unsupervised loss functionL online in Equation 12.

(a) Feature extractor

(b) Layer �ow estimator

Figure 1:Architecture of initial �ow decomposition network. Given a keyframeI k and a reference frameI j , the feature
extractor �rst generates two featuresck andcj . Then, we construct a cost volume with the two features and use six convolu-
tional layers, a global average pooling layer, and a fully connected layer to generate two motion vectors. We then tile these
two vectors into constant �ow �eldsV 0

B;k ! j andV 0
R;k ! j for the background and re�ection layers, respectively.



4. Dataset Generation

We illustrate our synthetic re�ection/obstruction sequences generation process and data augmentation in Figure 2 and 3.
We also provide examples of the training pairs generated from our pipeline in Figure 4 and 5.

Figure 2: Re�ection sequence generation.Given two randomly picked sequences, we �rst apply random homography
transformations independently on every frame. Then, we apply random walk cropping to simulate camera movements.
Afterward, we use the realistic re�ection image synthesis model in [1, 5] to generate a sequence with re�ections.

Figure 3:Obstruction sequence generation.We �st randomly pick a clean sequence and a sequence with fence or obstruc-
tion. Similar to the re�ection sequence generation, we apply random homography and random cropping to two sequences as
well as the ground-truth alpha maps of the fences or obstruction. Then, we use an alpha blending to generate a new sequence
with fences or obstruction.


